Chaos in magnetic flux ropes

نویسندگان

  • Walter Gekelman
  • Bart Van Compernolle
  • Tim DeHaas
  • Stephen Vincena
چکیده

Magnetic flux ropes immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Each collision results in magnetic field line reconnection and the generation of a quasi-separatrix layer. Three-dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. Conditional averaging is possible for only a number of rotation cycles as the field line motion becomes chaotic. The permutation entropy can be calculated from the time series of the magnetic field data (this is also done with flows) and is used to calculate the positions of the data on a Jensen–Shannon complexity map. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The Lyapunov and Hurst exponents are calculated and the complexity and permutation entropy of the flows and field components are shown throughout the volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Giant flux ropes observed in the magnetized ionosphere at Venus

[1] The Venus ionospheric response to solar and solar wind variations is most evident in its magnetic field properties. Early Pioneer Venus observations during the solar maximum revealed that the Venus ionosphere exhibits two magnetic states depending on the solar wind dynamic pressure conditions: magnetized ionosphere with large-scale horizontal magnetic field; or unmagnetized ionosphere with ...

متن کامل

Stationary flux ropes at the southern terminator of Mars

[1] Flux ropes have long been observed in the upper atmosphere of Venus and more recently at Mars. Here we present magnetic field measurements of flux ropes encountered at the southern terminator of Mars by Mars Global Surveyor and compare them to a flux rope model. This allows several parameters of each rope to be inferred. Remarkably similar flux ropes are met repeatedly at the southern termi...

متن کامل

Comparison study of magnetic flux ropes in the ionospheres of Venus, Mars and Titan

0019-1035/$ see front matter 2009 Elsevier Inc. A doi:10.1016/j.icarus.2009.03.014 * Corresponding author. Address: 6862 Slichter Hal Angeles, 595 Charles E. Young Drive East, Los Angeles E-mail address: [email protected] (H.Y. Wei). Magnetic flux ropes are created in the ionosphere of Venus and Mars during the interaction of the solar wind with their ionospheres and also at Titan during the i...

متن کامل

Reply to comment by H. Q. Feng, D. J. Wu, and J. K. Chao on Comparison of smallscale flux rope magnetic properties to largescale magnetic clouds: Evidence for reconnection across the HCS?

[1] The comment by Feng et al. [2010] suggests that the semi‐automated algorithm developed by Cartwright and Moldwin [2008] is not always a reliable method of identifying flux ropes and that the duration distribution of flux ropes in the solar wind is not bimodal. The semi‐automated method was developed in an attempt to remove the subjective nature of visual flux rope identification by using qu...

متن کامل

Initiation of Coronal Mass Ejections in a Global Evolution Model

Loss of equilibrium of magnetic flux ropes is a leading candidate for the origin of solar coronal mass ejections (CMEs). The aim of this paper is to explore to what extent this mechanism can account for the initiation of CMEs in the global context. A simplified MHD model for the global coronal magnetic field evolution in response to flux emergence and shearing by large-scale surface motions is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014